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ABSTRACT

This paper presents a robust controller design for second-order dynamic systems. The controller is

model-independent and itself is a virtual second-order dynamic system. Conditions on actuator

and sensor placements are identified for controller designs that guarantee overall closed-loop

stability. The dynamic controller can be viewed as a virtual passive damping system that serves to

stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and

dashpot elements that play the same roles as actual physical elements in stability analysis. Position,

velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the

controller design. From this illustration, the physical meaning of the controller design is apparent.

INTRODUCTION

Control theory for time-invariant linear systems which are described by first-order dynamic

equations have been well established for decades. Control software tools today are also written in

first-order forms. For applications, engineers can simply convert whatever models they have to

the first-order forms and then use the existing tools to design the controllers. If the performance

requirements are satisfied by the controllers, the design jobs are completed. If not, the design

parameters are changed and the design procedure continues until a satisfactory design is found. For

a small scale system, a few design iterations may be enough to complete a satisfactory design.

However, for a large scale system such as the space station, the dynamic model usually involves a

large number of degrees of freedom and is best described by second-order dynamic equations in

terms of sparse structural matrices including mass and stiffness matrices. For second-order

dynamic systems, transforming to first-order form not only increases the dimension of the

problem, but also destroys the sparsity of the structural matrices, i.e. the mass and stiffness



matricesfor flexible structures.As aresult,computationalefficiencyandphysicalinsightarelost
in thefirst-order form. Existing control analysisanddesignsoftwaremay not beableto handle

sucha large systemdue to computationaldifficulties. For example,solving a 1000-by-1000-

dimension Riccati equation is considered numerically impossible using today's numerical

techniques.Therearebasicallytwo ways to addressthecontrollerdesignproblemsfor a large-

scalesystem.Oneway is to minimize thedimensionof thesystemmodelby first preservingthe

second-orderform andthenperforming modelreduction.Laboratoryexperimentsarerequiredto
verify thereducedmodelfor robustcontrollerdesigns.Recentlycontrollerdesignsusingsecond-

order systemequationsdirectly have gainedattentionin the literature as identified in Ref. [1].
Their computationaladvantagesand physical featuresarealso illustrated in Refs. [2] and [3].

Another way is to design a model-independent controller, which is insensitive to system

uncertainties. The objective of this paper is to derive model-independent controllers for dynamic

systems using second-order dynamic equations.

When a mass-spring-dashpot is attached to any mechanical system, including flexible space

structures, the damping of the system is almost always augmented regardless of the system size.

The parameters of the mass-spring-dashpot are arbitrary, model-independent and thus insensitive

to the system uncertainties. To satisfy the system performance requirements, the parameters are

adjusted using the knowledge of the system model. The more the system is known, the better the

parameters of the mass-spring-dashpot may be adjusted to meet the performance requirements.

However, no matter what happens, the mass-spring-dashpot won't destabilize the system because

it is an energy-dissipative device. The question arises as to if there are any feedback control

designs using sensors and actuators which behave like the passive mass-spring-dashpot. This

paper is motivated by this question and the answer is very encouraging.

A novel approach for control of flexible structures is developed using a controller which can be

described by a set of second-order dynamic equations. Under certain realistic (practical)

conditions, this method provides a stable system with an infinite gain margin. For better

understanding, two major steps are involved in developing the formulation of the method. First,

consider only the direct output feedback for simplicity, implying the absence of dynamics in the

feedback controller. Conditions are identified in terms of the number and type of sensors and their

locations to make the system asymptotically stable with an infinite gain margin. Second, assume

that the feedback controller contains a set of second-order dynamic equations. It is equivalent to

visualize an imaginary flexible body, i.e. the feedback controller, which is linked side by side to

the real flexible body. In other words, two sets of second-order dynamic equations are coupled to

generate a closed-loop system. Design freedom increases when the dimension of the controller
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dynamicequationsincreases.Conditionsarederivedfor thedesignof a stableclosed-loopsystem

having an infinite gain margin. The method takesadvantageof the second-orderform of

equations(insteadof transformingto afirst-orderform) which providesaneasywayof discussing

and obtaining the stability margin and results in a considerablecomputationalefficiency for
numericalsimulations. Comparisonsbetweentheactive feedbackandthepassivemass-spring-

dashpotare giventhroughseveralillustrativeexamples.

DIRECT FEEDBACK

In the analysis and design of dynamics and vibration control of flexible structures, two sets of

linear, constant coefficient, ordinary differential equations are frequently used

MX + Dk +Kx = Bu (1)

y = HaX + Hv.x + Ha X (2)

Here x is an n x 1 state vector, and M, D, and K are mass, damping and stiffness matrices,

respectively, which generally are symmetric and sparse. The n xp influence matrix B describes the

actuator force distributions for the p x 1 control force vector u. Typically, matrix M is positive

definite whereas D and K are positive semi-definite. In the absence of rigid-body motion, K is

positive definite. Equation (2) is a measurement equation having y as the m x 1 measurement

vector, H a the m x n acceleration influence matrix, Hv the m x n velocity influence matrix, and lid

the m x n displacement influence matrix. Note that Eq. (I) can be solved for the acceleration in

terms of the displacement, velocity and control force to obtain a new measurement equation in

place of Eq. (2). However, physical insight is lost in this approach to controller design.

The measurement equation, Eq. (2), may be used either directly or indirectly for a feedback

controller design. Here we will use direct feedback. Let the input vector u be

u =-Gy =-GHaJ_- GHvYc- GHax (3)

where G is a gain matrix to be determined. Substituting Eq. (3) into Eq. (1) yields

(M + BGHa )X + (D + BGHv )_ + (K + BGHd )x = 0 (4)
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For simplicity, consider the case where Ha =Ha = 0. Assume that the number of sensors rn is

larger than the number of actuators p. Let the actuators be located such that the row space

generated by B T belongs to the row space generated by H,,. In other words, the actuators are

located in such a way that the control influence matrix B can be expressed by v

B r= CbH,, (5)

where Cb is a p x m matrix which may be obtained by Cb = BTHv T (Hv HvT) -1. Assume that the

gain matrix G is computed by

G = LLTCb (6)

where L is a p xp arbitrary matrix. Substituting Eq. (6) in Eq. (4) and noting the assumption that

rid = 0 leads to

M)_ + (D + BLLTB T)._ + Kx = 0 (7)

For the case wherep < m < n, BLLrB T is positive semi-definite and thus D + BLLTBTis at least

positive semi-definite for a positive semi-definite matrix D. As a result, the closed-loop system,

Eq. (7), is stable ifD + BLLTB T is positive semi-definite, or asymptotically stable ifD + BLLTB T

is positive definite. For the case where D is positive definite, D + BLLTB T is positive definite

which yields an asymptotically stable closed-loop system. This leads to a conclusion that, for a

structural system with some passive damping, an output velocity feedback scheme with non-

collocated velocity sensors and actuators may make the closed-loop system asymptotically stable

with an infinite gain margin since L in Eq. (6) for determination of the gain matrix G is an arbitrary

matrix, as long as the actuators are properly located satisfying Eq. (6). Note that, for colocated

sensors and actuators, B T = Hr. Without velocity measurements, the system damping cannot be

augmented from direct output feedback alone. However, if there are actuator dynamics involved,

the system damping may be augmented by direct displacement or acceleration feedback. See Ref.

[31.

CONTROLLER WITH SECOND-ORDER DYNAMICS

Assume that the controller to be designed has a set of second-order dynamic equations and

measurement equations similar to the system equations, Eqs. (1) and (2)
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Mc:i.c + Dc :Cc+ Kc Xc = Bc Uc (8)

Yc = HacbCc + H,,c :Cc+ Hac Xc (9)

Note that this is a set of imaginary equations which do not represent any physical system. In fact,

this set of equations basically serves as a filter to shift the phase of measurement signals. Here Xc

is the controller state vector of dimension nc, and Mc, Do and Kc are thought of as the controller

mass, damping, and stiffness matrices, respectively, which generally are symmetric and positive

definite to make the controller asymptotically stable. The nc x m influence matrix Bc describes the

force distributions for the rn x I input force vector Uc. Equation (9) is the controller measurement

equation having Yc as the measurement vector of length p, Hac the p x nc acceleration influence

matrix, Hvc the p x nc velocity influence matrix and Hac the p x nc displacement influence matrix.

Again, all the quantities, Uc, Yc, and nc are imaginary and thus arbitrary which means that Mc, Dc,

Kc, Hdc and H,,c are the design parameters for the controller.

Let the input vectors u, uc in Eq. (1) and in Eq. (8) be

U = yc = nacJCc + Hvc.iCc + Hdc Xc

Uc=y=HaJ_ + HvYc + Hdx

(10)

(11)

Substituting Eq. (10) into Eq. (1) and Eq. (11) into Eq. (8) yields

Mt Jet+ Dt Jet+ Ktxt = 0 (12)

where

Mi = -Bc Ha Mt .1' -Bc Hv Dc J ' -Bc Ha Kc J '

If the design parameters, Mc, Dc, Kc, Hac and H,,c are chosen such that Mr, Dt and Kt are positive

definite, the closed-loop system, Eq. (12), becomes asymptotically stable.
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DISPLACEMENT FEEDBACK

For better understanding of the advantage of the controller having second-order dynamic

equations, consider a special case where Ha = H_c = Hv = Hvc = 0. To make Kt symmetric, it is

required that

BHac=HrBrc (13)

or

(14)

For the case where the sum of the number of actuators, p, and the number of sensors, m, is less

than the number of states, n, the left-most matrix of Eq. (14) is a tall matrix. Unless B is in the

space spanned by HaT or vice versa, there does not exist any solutions for Bc, Hdc in Eq. (13).

Assume that the number of sensors, m, is larger than the number of actuators, p. Let the actuators

be located such that the row space generated by B r belongs to the row space generated by lid, i.e.

the actuators are located in such a way that the control influence matrix B can be expressed by

BT=QoHa (15)

where Qb is a p x m matrix which may be obtained by Qb = BTHa T (Ha HaT) q. Substituting Eq.

(15) into Eq. (13) yields

HT,',T,, =HTBT cd_bndc (16)

Since Ha T is a tall matrix for m < n, the only possible solution is

Q_Hac = BTc (17)

For any given matrix Hdc, this equation produces a Bc T which makes the matrix Kt symmetric,

i.e.,

[1 [ T,K -H_tBc
K -BHdc or Kt=-BcHct Kc

Kt = -H T B T Kc J
(18)
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The next question is how to choose a matrix Hdc which makes the closed-loop stiffness matrix Kt

positive definite. The matrix Kt is positive definite, generally written as Kt > 0, if and only if

x T Kt xt > 0 (19)

for any real vectorxt except the null vector. Substituting the definition of Kt and xt from Eq. (12)

in Eq. (19) yields

xTgtx t = xT(K - HTBTBc nd)X + (BcHax- Xc)T(BcHdX - Xc) + XTc(Kc - l)Xc

= xT(K - BHacHTB T)X + (HTB TX-xc)T(HTB TX- Xc) + xT(Kc - 1)Xc

(20)

This equation is greater than zero if Bc and Kc are chosen such that K - BHacHacTB T and Kc - I are

positive definite. Note that this is a sufficient condition but not a necessary condition. To make

Eq. (19) hold, K must be a positive definite matrix, i.e. K > 0, and Bc must be chosen such that

K - BHacHacrB r > O. It implies that this controller may not be able to control rigid body motion

since K in this case is only a positive semi-definite matrix, K > 0. To release the constraint

condition, K - BHacHacTB T > 0, K must be increased by at least BHacHacTB r. In other words, the

system must be stiffened which can be achieved by adding displacement feedback.

Let the input force be

u = Yc - Gy = Hac xc - GHa x (21)

where G is a gain matrix to be determined. Note that the velocity feedback is not considered here.

Substituting Eq. (21) into the system equation, Eq. (1), the closed-loop stiffness matrix, Eq. (18),

becomes

-Ha Bc
Kt= K + BGHa T T"

-Bc Ha Kc
(22)

If G is chosen such that

G = Hac Bc (23)
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which from Eq. (13) results in

BGHct = BHdc Bc Ha = HTB TcB¢Ha

The closed-loop stiffness matrix, Eq. (22), thus becomes

which changes Eq. (20) to be

xTKtxt = xTKx + (Bc HdX - xc)T(Bc Hdx - Xc) + x_(Kc - l)xc

= xTKx + (HffcB rx- xc)T(HTc B TX- Xc) + xT(Kc - l)Xc

(24)

(25)

Since Kc is a design parameter, the closed-loop system becomes stable as long as K¢ is chosen

larger than I, i.e. xcT(Kc - l)x¢ > 0 for any arbitrary vector Xc. An obvious choice is Kc = I

where I is an identity matrix of dimension nc. However, this is not the best choice which will be

discussed later. To this end, it is shown that a stable closed-loop system can be designed using a

feedback controller with second order dynamic equations. The controller has an infinite gain

margin in the sense that the matrices Mc, Dc and Ko which may be considered as the gain matrices

for the controller state vector xc and its derivatives, can be as large as desired without destabilizing

the system as long as they are positive definite and Kc is larger than I.

A little modification of the above design produces a better design which has physical meaning.

Indeed, let

Bc = KcB--cor B--c= KdIBc (26)

where Kc is assumed to be positive definite so that the solution for ffc exists for any given Bc. In

addition, let the gain matrix G in Eq. (23) be slightly modified as follows

G = Hac Bc (27)

which, with the aid of Eq. (13), results in
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aOl4a=BratB_m =H[_Xc_cm

The closed-loop stiffness matrix in this case (see Eq. (24)) thus becomes

K,= [K+ HT-_c--KC-KcBc Ha-ffcHa -HTff_rcKC ]Kc
(28)

which in turn changes Eq. (25) to be

xTKtx, = xTKx + (-ffc Hdx- xc)TKc (ffc HdX - Xc)

T_--'T= xTxx+(nac8 x- XSXc (n$)-_x-go)
(29)

This equation is obviously positive if K is at least positive semi-definite, i.e. K > 0. Does this

design have any physical meaning? The answer is positive. Consider the special case where the

controller is as large as the system in the sense that the number of system states n is identical to the

number of controller states nc. Furthermore assume that all the states are directly measurable, Ha

= I, and there are n actuators collocated with the sensors, B = I. In this case, Qb = I (Eq. (15)),

Bc = Hac = Kc (Eq. (17)) for B--c= L and G = Kc (Eq. (27)), which yields from Eq. (28)

x, =[K +Kc -K,] (30)[ -Kc Kc

For a single degree of freedom (no = n = 1), Kt represents the stiffness matrix for two springs

connected in series with spring constants K and Kc.

PHYSICAL INTERPRETATION

For better understanding of the nature of the dynamic control designs developed here, they are now

interpreted in physical terms. In this section, three illustrative examples will be shown, starting

with a simple spring-mass system.

EXAMPLE I: A simple spring-mass system with a single-degree-of-freedom controller

Consider a single-degree-of-freedom spring-mass system, nc = n = 1, with displacement

measurement of the system mass. The second-order controller for this case reduces to a virtual

spring-mass-dashpot system connected in series with the system mass as shown in the following

sketch
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Fig. 1

SYSTEM

(A Real Spring-Mass System)

I !"

I I

I I

I x I

i._ _1.

CONTROLLER

(A Virtual Spring-Mass-Dashpot System)

A simple spring-mass system with a single-degree-of-freedom dynamic controller

v

Let the position of masses m and mc be measured form their equilibrium states. The equations of

motion for the above system can be derived by applying a force to m and mc. The force applied to

the system mass m in this case is the force F transmitted through the spring kc. This is precisely

the control force applied to the system as given in Eq. (21) with Hdc = kc, Hd = 1, and G = kc.

Thus the second-order control law is simply

u = F = kc (Xc - x) (31)

where Xc is computed from

mc )Cc+ dc Ycc + kc xc = kc x

The equation of motion which describes the closed-loop behavior of the above system is simply

m 0 3i +k¢ -kc

The above equation verifies Eq. (12) with Hvc = Hv = Hac = Ha = 0 (i.e. no velocity and

acceleration measurements), and Kt given in Eq. (30). The above set of equations is always stable

for any m, k, mc, kc, and dc, and is asymptotically stable for any dc > 0. We now consider

various special cases.

Case 1: For the controller without damping, dc = 0, the system reduces to two spring-masses

connected in series. If kc is small, the control force given in Eq. (31) is small, thus the controller

exerts little influence on the system. Mathematically, Eq. (32) becomes a set of two uncoupled
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equationsof x and Xc, and obviously little change in the response of the controlled system is

expected from this controller. If, however, kc is large, (i.e. the virtual spring is stiff) the relative

displacement between the two masses is small. Hence in the limit the two masses move together

like a single mass m +mo and the natural frequency of the system is approaching

__L__
on = ._/ m + mc (33)

• As a result, for large kc, changing the design variable mc will affect the natural frequency of the

closed-loop system according to Eq. (33) above.

Case 2: For dc > 0, the system is always asymptotically stable (unless kc -- 0, which as discussed

before means no control). The energy flows from rn to mc and is dissipated by the damper. Again,

for large kc, the system can be approximated as

(m + rnc))i + dc Yc+ kx = 0 (34)

Introduce the notation

Thus,

m + mc ' m + mc

ac (35)
= 1 " k(m+ mc)

The design variables in this case are dc and mc. Various choices of dc and mc will result in ¢ > 1,

< 1, or _ = 1, which corresponds to the cases the closed-loop system is over-damped, under-

damped, or critically damped, respectively.

Case 3: For general values of ko do and mo the design can be thought of as a virtual vibration

absorber. Let the system be excited by some unknown force Fe j_t, and the displacement of the

mass m be denoted by x = Xei(O_t + ¢). The typical objective of a vibration absorber design is to

determine the values of ko dc, and mc such that the ratio
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is minimizedoveraninterestedrangeof excitationfrequencyr_o/-.

EXAMPLE 2: A two-degree-of-freedom system with a single-degree-of-freedom dynamic controller

Next, consider a two-degree of freedom spring-mass system with displacement measurements of

the masses ml and rn2 from their equilibrium positions, n = 2. First consider the case where the

the controller has only one state, nc = 1. The second order controller in this case is simply

equivalent to a virtual spring-mass-dashpot system connected in series with the two system masses

as shown below

SYSTEM

(A Real Spring Mass System)

CONTROLLER

(A Virtual Spring-Mass-Dashpot System)

f T

1 I

I d c

I Xl x2 I x c

I_ ........... A

i

I

_J

Fig. 2 A two-degree of freedom system with a single-degree-of-freedom dynamic controller

It can be easily shown that the control force applied to the system is simply

(36)

where Fj denotes the force applied to mj, j = 1, 2; and xc is given by

mc_ic+dcic + k_x_ = k_x2

Furthermore, the closed-loop behavior of the above system is governed by

m2 -_2 +

0 mc Jic
000]i  1 0]ix 10 0 ._2 + -k2 k2 +kc -kc X2 = 0

0 0 dc X3 0 -kc kc Xc

(37)
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which againverifies Eq. (12)with Hvc = Hv = Hac = Ha = 0 and with Kt given in Eq. (30). Note

that the above scheme requires only displacement measurement of the mass m2.

EXAMPLE 3: A two-degree-of-freedom system with a two-degree-of-freedom dynamic controller

Consider the two-degree-of-freedom system above again with displacement measurements only,

but now displacement measurement of the mass ml is also to be used in the controller design. The

second order controller design in this case is simply

tU = F2 kcz LXcz x2
(38)

where

[0 ¢, mO][_c_ 1+[_, _,][_c, 1+[_, kO_,]rxc'_x_,_--[ %,,_][;_]LXc2J tXc2J
(39)

The closed-loop system is equivalent to a mass-spring-dashpot system shown below

SYSTEM

(A Real Spring-Mass System)

CONTROLLER

(A Virtual Spring-Mass-Dashpot System)

I

I x2, xc2

I xcl

Fig. 3 A two-degree of freedorn system with a two-degree-of-freedom dynamic controller

whose behavior is governed by
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rm,o o olr._,
/o ,..,._0 0//i__
[o° ° "_,°//_,0 0 mc2JL_c2

[oooo7r 11o/rx,+ 0 0 0 0 //3_2[+ -k2 k2 +kc2 0 -kc2 x2

o oa_,o//_c,/ -k_, o _, o Xc,
0 0 0 dc2JLY%J 0 -kc2 0 kc_jLXc2J

= o (40)

If velocity measurements arc available, say at the system mass ml, then a dashpot element may be

added in between ml and mcl for example. It should be noted, however, that the controller

masses, springs, dashpots are in fact virtual elements with physical interpretations as such. For

ground based systems, they may represent actual physical elements attached to the ground. But for

space based systems, they are simply controller gains in the control algorithm.

ACCELERATION FEEDBACK

The above controller can be extended to acceleration feedback as well. Consider the system given

in Eq. (1), but now the measurement vector y in Eq. (2) has only acceleration measurements, i.e.

Hv=Hd =Hvc=Hdc=O inEq. (12)

Mt xt + Dt Jct + Kt xt = 0

where

,,.,_[_,&-_,o_o,__[g_] ,,.__[_.o]g_J'

To make Mz symmetric, it is required that BHac = HaTBc T as discussed in Eqs. (13)-(17). All the

discussions regarding the positive-definiteness of Kt from Eqs. (18)-(20) also apply to lift.

Additional coupling in the closed-loop mass matrix Mr can be achieved by letting the input u in Eq.

(12) include direct acceleration feedback, i.e.,

which makes M,_come

u =Yc - Gay =HacJ_c - Gay (41)

Mt=[M + BGHa -BHac] (42)-ScH,, Mc J
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As before,Mt can be made symmetric and positive definite by proper choices ofHac, Bo and Ga.

let

Bc = McB--c or B--c= MclBc (43)

where Mc is positive definite so that the solution to Bc exists for any given Bo Let G be chosen

such that

G = Ha:ffc = Hac MclBc (44)

which, with the aid of the equality, BHac = HaTBc T, results in

• = HZaBcBcHa =BGHa = BHa: Bc Ha T 7"-6- HaT-_cMcffc Ha (45)

The closed-loop mass matrix in this case becomes

Mt = [ M + HI-ff[_Mc -ffcHa'McBc Ha -HaTB-"_CMCMc] (46)

This is a positive definite matrix as discussed in Eq. (29) for Kt, regardless of the value of M as

long as M is positive definite. The closed-loop in this case becomes

0 k 0 x"M+HaT_c_McffcHa -HaT-ff7c[Mc [ffc] +[_ Dcl['xc] +[KO Kc l[xc]=O (47)-Mc Bc n,, Mc

Figure 4 shows a block diagram of the closed-loop system with acceleration feedback. In order to

have a different flavor for the readers, all the quantities are expressed in frequency domain to

quantify the multi-variable stability margins and performance of such systems. Let Gs(s) = Ha

[Ms 2 + Ds + K]'IB be the system transfer function, Gc(s) = Ha: [Mcs 2 +Dcs + Kc]'lBc the

controller transfer function, and Ga = Ha: Mc'lBc the direct acceleration feedback gain. The

acceleration measurement y(s) caused by the application of an external force r(s) can be expressed

by

y(s) = s2Gs(s) [r(s) + (s2Gc(s) - Ga) y(s)] (48)
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or

y(s) =[I- s2Gs(s) (s2Gc(s) - Ga)]'ls 2 Gs(s)r(s)

The closed-loop transfer function from r(s) to y(s) is

a(s) = [I " S2Gs(S) (s2ac(s) - aa)]'ls 2 as(s ) (49)

r(s)

+

Ha[MS 2 + Ds + K]'IB

:[G,(s)] i-uzy-
" Hat MclBc [

:[Go] [!
Hat[Mcs 2 +Dcs + Kc]lBc

I-

y(s)
v

Fig. 4 Block diagram of the closed-loop system with acceleration feedback

It is interesting to note that

s2Gc(s) - Ga=-Hac(Mcs 2 + Dcs+ Kc)'l(Dcs + Xc) MclBc (50)

Figure 5 is equivalent to Fig. 4 for the closed-loop system with acceleration feedback. All the

quantities Mc, Dc, and Kc are design parameters which are model independent but they must be

positive definite. The quantities Hat and Bc are related by Ha and B such that BHat = HfiBc T. This

system is always stable regardless of how much uncertainties occur in the system matrices M, D,

and K.
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r(s) +

____ H,,[Ms2+ Ds+ K]_B---[O_(s)]

)

-_-Hx[Mcs 2 + Dcs+ Kc]'l(Dcs + Kc)MclBc _1_

y(s)

Fig. 5 Simplified block diagram of the closed-loop system with acceleration feedback

Let H---_be -Hac= Hac Mc , and recall that Bc = Mc Bo Equation (50) becomes

s2Oc(s) - Ga =--ffac(S 2 + MclDcs + MclKc)-l(Dc s + Kc)ffc (51)

For the case where Mc is sufficiently large such that MJDc and Mc-lKc may be neglected, the

above equation can be approximated by

s2Gc(s) - Ga -- --fix (Des + Kc) ffcS "2 (52)

Figure 5 can then be reduced to yield Fig. 6. For the case Kc = 0, the controller becomes an

integrator of the acceleration measurement. If Hac is chosen to be Bc r, then

s 2Gc(s) - Ga = "_c Dcffc s'l

which is equivalent to a direct velocity feedback to the system.

+

__ Ha[MS2 + Ds + K]-IB-[OAs)] i - t_:__j

[ -Hac(Dcs + K_}__

y(s)
Ib,._

Fig. 6 Reduced block diagram of the closed-loop system for a sufficiently large Me
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Although it seems logical to choose a large mass matrix Mc for the controller, measurement bias

and noises may prevent such a choice in practice, because integrating a bias is obviously not

desirable in a control loop.

The procedure for deriving the second-order controller with acceleration feedback is identical to

that for displacement feedback. Mathematically, both controllers are identical in the sense that the

closed-loop mass matrix Mt for acceleration feedback can be obtained by replacing K by M in the

closed-loop stiffness matrix Kt for displacement feedback, and subscript d by a. In other words,

both displacement and acceleration feedback are conceptually dual. However, significant

differences between both controllers appear when they are implemented either actively, or

passively, which will be shown in the following example.

EXAMPLE 4: A single-degree-of-freedom system with acceleration feedback

Consider a single degree-of-freedom spring-mass system with acceleration measurement of the

system mass. The second-order controller for this case reduces to a virtual spring-mass-dashpot

connected in series with the system mass as shown in Fig. 7

SYSTEM

I-- ...... I ]

I I kc ....... I

I _ I dc _ I

I x I xc I

b b J

Fig. 7 A simple spring-mass system with acceleration feedback

Note that the vector xc here means the relative position of mc to the position of m. In this case, Ha

and Bc in Eq. (47) are chosen to be Bc = "Ha = 1. The second-order control law is

= +x)

where Xc is computed from
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Theclosed-loopsystemcanthenberewrittenas

[m+rnc mmC][3/]+[0 0][.x] [k 0][ x]
+ =0

mc ?fc 0 tic YCc 0 kc Xc

The transfer function, Eq. (49), becomes

G(s) = s 2
(ms2 + k)+ mcs2{dcs + kc)(mcs2+ dcs + kc_ 1

For large mc, G(s) reduces to

G(s) = S2
ms2 + + (k + kc)

The system is clearly asymptotically stable. The numerator s 2 appears due to the acceleration

feedback.

Comparison of Fig. 1 and Fig. 7 reveals the difference between the acceleration and displacement

feedback controllers. The controller for acceleration feedback does not have a virtual ground

attached to the control mass and thus cannot control the rigid body motion.

CONCLUSIONS

This paper formulates a robust second-order dynamic stabilization controller design for second-

order dynamic systems. The design is passive in the sense that it contains mechanisms that serve

only to transfer and dissipate energy of the system. The controller interacts with the physical

system only through spring, mass, and dashpot elements, and therefore, it can be implemented

actively or passively. In other words, stabilization can be accomplished either by a controller with

gains interpreted as virtual mass, spring, and dashpot elements, or by actual physical masses,

springs, and dashpots connected to the system.

The passive design means that the controller does not destabilize the system. As far as stability is

concerned, the controller is model independent, and this is a robust design. Specifically, overall

closed-loop stability is guaranteed independently of the system structural uncertainty and variations
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in thestructuralparameters.It should be emphasized that this is a robustness result with respect to

structural uncertainty in the absence of measurement uncertainty and other contributing factors.

However, control performance, unlike stability robustness, is dependent on the system

characteristics. Knowledge of the system model can always help improve a controller design. In

this method, the controller order and/or controller gains can be adjusted to meet the desired

performance. Physical interpretation of the controller gains as virtual masses, springs, and

dashpots provides convenient rules of thumb as to how they should be adjusted to meet a certain

desired performance objective.

Finally, the controller has been formulated from the continuous-time setting. Actual implementation

of the controller, however, most likely requires usage of a digital computer. In future work, effects

of sampling and time delays will be addressed. Other practical issues that can also affect the control

performance such as measurement noises, actuator and sensor saturation limits will be

investigated. It should also be interesting to examine the difference and relation between this

approach and others such as full state feedback with a second-order state estimator.

REFERENCES

1 Belvin, K. B., "Simulation and Interdisciplinary Design Methodology for Control-Structure

Interaction Systems," Ph. D. Dissertation, University of Colorado at Boulder, July 1989.

2 Juang, J. N. and Maghami, P. G., "Robust Eigensystem Assignment for Second-Order

Dynamics Systems," AIAA-90-1191-CP. Proceedings of the AIAA Dynamic Specialist

Conference, Long Beach, CA, April 5-6, 1990, pp. 10-18.

SuUa, J. L., Juang, J. N., and Horta, L. G., "Analysis and Application of a Velocity Command

Motor as a Reaction Mass Actuator," AIAA-90-1227-CP. Proceedings of the AIAA Dynamic

Specialist Conference, Long Beach, CA, April 5-6, 1990, pp. 360-370.

2O



N/kSA
Natona; AeroeauIK:s and
_ace Adm,n_S_ratKT_

1. Report No. 2. Government Accession No,

NASA TM-I02666

4. Title and Subtitle

Robust Controller Designs For Second-Order Dynamic

System: A Virtual Passive Approach

7. Author(s)

Jer-Nan Juang and Minh Phan

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

3, Recipient's Catalog No.

5, Report Date

May 1990

6, Performing Organization Code

8, Performing Organization Report No.

10. Work Unit No.

590-14-61-01

11. Contract or Grant No.

13, Type of Report and Period Covered

Technical Memorandum

Report Documentation Page

14. Sponsoring Agency Code

15. Supplementa_ Notes

Jer-Nan Juang: Principal Scientist, Spacecraft Dynamics Branch, Langley Res. Cente:

Minh Phan: Research Associate, National Research Council, Washington, D.C.

16. Abstract

This paper presents a robust controller design for secon-order dynamic systems.

The controller is model-independent and itself is a virtual second-order dynamic

system. Conditions on actuator and sensor placements are identified for controller

designs that guarantee overall closed-loop stability. The dynamic controller can

be viewed as a virtual passive damping system that serves to stabilize the actual

dynamic system. The control gains are interpreted as virtual mass, spring, and

dashpot elements that play the same roles as actual physical elements in stability

analysis. Position, velocity, and acceleration feedback are considered. Simple

examples are provided to illustrate the physical meaning of this controller design.

17. Key Words (Suggested by Author(s)}

Control of Flexible Structures

Robust Controller Design

Dissipative Device

18. Distribution Statement

Unclasslfied--Unlimited

Subject Category 39

19. Security Cla_if. (of this report)

Unclassified

20. Secur_ Cla_if.(ofthispage)

Unclassified

21, No. of pages

21

22. Price

A0 3

NASA FORM 1626 OCT 86




